Swami Ramanand Teerth Marathwada University, Nanded (M.S.).
B.A./B.Sc. First Year
New Syllabus (Mathematics)
SEMESTER - I & II
Effective from June -2013

B.A/B.Sc. F.Y. Semester- I
Paper I (MT 101): Differential Calculus
(No. of periods: 60 Max.Marks:50)

Revision: Relation, Functions, Limit, Continuity, Differentiation, Derivatives of some standard functions, Some rules of Differentiation.

Unit I: Hyperbolic functions, Higher order derivatives, \(n^{th}\) order derivatives, Leibnitz theorem, Equation of tangent and normal, Angle of intersection of two curves, Length of tangent, normal, sub tangent and subnormal at any point of a curve.

Unit II: Rolle’s theorem, Lagrange’s mean value theorem, Meaning of sign of derivative, Cauchy’s mean value theorem, Generalized mean value theorems (Taylor’s theorem, Maclaurin’s theorem), Expansions of some functions. Indeterminate forms: \(0/0, \infty/\infty, 0. \infty, \infty-\infty, 0^0, 1^\infty, \infty^0\).

Unit III: Functions of two variables, Neighborhood of a point (a,b), Limit & Continuity, Partial derivatives, Geometrical Interpretation, Homogeneous functions, Theorems on total differentials, Equality of \(f_{xy}(a,b) \) & \(f_{yx}(a,b)\), Equality of \(f_{xy} \) & \(f_{yx}\), Taylors theorem for functions of two variables.
TEXT BOOK:

“Differential Calculus” By Shanti Narayan and P.K. Mittal, S. Chand & Co.

Unit II: 8.1-8.7, 10.1-10.6.

Unit III: 11.1-11.9, (Delete 11.9.1 to 11.9.4), 11.10, 11.11.

REFERENCES:

1) Differential calculus By Shanti Narayan, S. Chand.
5) Introduction to Calculus by Green Span D., Harper & Row
6) Lectures on Calculus and Differential Equations By T. M. Karade and M. S. Bendre, Sonu Nilu Bandu , Nagpur.
8) Advanced Calculus, G.P. Shrivastav, Hari Kishan, Nagendra Kumar, Ram Prasad and sons pub.
9) Mathematics for Degree Students, By P. K. Mittal, S. Chand and Co. Delhi.
B.A/B.Sc. F.Y. Semester- I
Paper II (MT 102): Algebra and Trigonometry
(No. of periods: 60 Max.Marks:50)

Unit I : Matrices : Matrix, Different Types of Matrices, Equality of Matrices, Addition (Sum) of Two Matrices, Properties of Matrix Addition, Subtraction of Two Matrices, Multiplication of a Matrix by a Scalar, Properties of Multiplication of a Matrix by a Scalar, Multiplication of Two Matrices, Properties of Matrix Multiplication, Positive Integral Powers of a Matrix, Transpose of a Matrix, Conjugate of a Matrix, Transposed Conjugate of a Matrix, Determinant of a Square Matrix, Minor of an Element, Co-factor of an Element, Adjoint of a Square Matrix, Inverse of a Square Matrix, Singular and Non-singular Matrix, Orthogonal Matrices, The Determinant of an Orthogonal Matrix, Unitary Matrix.

Characteristic Roots and Characteristic Vectors : Definitions, To Find Characteristic Vectors, Cayley-Hamilton Theorem (Statement Only)

Unit III : Trigonometry : Complex Quantities, DeMoivre’s Theorem, Expansions of $\sin n\theta$ and $\cos n\theta$, Expansions of the sine and cosine of an Angle in Series of Ascending Powers of the Angle, Expansions of the sines and cosines of Multiple Angles, and of Powers of sines and cosines, Exponential Series for Complex Quantities, Circular Functions for Complex Angles, Hyperbolic Functions, Inverse Circular Functions, Inverse Hyperbolic Functions.
TEXT BOOK :
Topics in Algebra By Om P. Chug, Kulbhushan Prakash, A.D.Gupta,

Scope : Unit I : Chapter 10 : 10.1 to 10.17 (10.13, 10.15, 10.17 Only Statements), 10.20 to 10.22, 10.27 to 10.32, 10.34 to 39 (10.39 Only Statements)

Unit II : Chapter 11 : Art 11.1, 11.2, 11.5 to 11.16, 11.32 to 11.39
Chapter 12 : Art 12.1 to 12.3, 12.18 (Only Statement)

Text Book : 2. Plane Trigonometry Part II By S.L.Loney,
A.I.T.B.S. Publishers and Distributors, Delhi (Reprint 2003)

Scope : Unit III : Art. 17, 18 19, 21, 22, 27, 32, 33, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 67, 68, 69, 71, 73, 74, 76, 77, 79.

REFERENCES :
1. A Text Book of Matrices By Shanti Narayan (S.Chand & Company Ltd., New Delhi)
2. Matrices By A.R.Vasishtha (Krishna Prakashan Media (P) Ltd., Meerut)
5. Higher Trigonometry B. C. Das, B. N. Mukherjee, By (U.N.Dhur & Sons Private Ltd. Kolkata)
11. Mathematics for Degree Students, By P. K. Mittal, S. Chand and Co .Delhi .
Unit I : Integration, Definition, Standard Forms.
Methods of Integration, Integral of product of two functions, Reduction formulae, Integral of rational fractions, Partial fractions, Non-repeated linear factors, Repeated factors, Integration of Irrational Algebraic fractions, A rational function of a root of a linear expression and x, Integration of \(x^m(a + b^n)^p \), Reduction formulae for \(\int x^m(a + b^n)^p \, dx \).

Unit II : Integration of Transcendental Functions :
Integration of \(\sin^m x \), \(\cos^n x \), reduction formulae for \(\int \sin^m x \, dx \), reduction formulae for \(\int \sin^m x \cos^n x \, dx \), Integration of \(\tan^n x \) and \(\cot^n x \), Integration of \(\sec^n x \) and \(\cosec^n x \), Integration of \(x^n \sin mx \) or \(x^n \cos mx \), Definite Integrals : Definitions, General properties of the definite integrals, The integral as the limit of a sum, Areas

Unit III : Areas of Curves :
Areas of curve given by Cartesian equations, Areas of curves given by polar equations. Multiple Integrals : Double integrals, Evaluation of double integrals, Area by double integration, Volume under a surface, Triple integrals, Gamma function, Definition, An important property, Product of two single integrals, Value of \(\Gamma(1/2) \), Integral of \(\sin^{2m-1}x \cos^{2n-1}x \), Beta function, Dirichlet’s integral

TEXT BOOK :
Integral Calculus, by Gorakh Prasad, Pothishala Private Limited, 2, Lajpat Road, Allahabad-211002

Scope :
Unit I :
Chapter 1 : 1.10, 1.11, 1.13, 1.3, 1.35, 1.37
Chapter 2 : 2.1, 2.2, 2.3
Chapter 3 : 3.1, 3.8, 3.81
Unit II :
 Chapter 4 : 4.1, 4.11, 4.12, 4.2, 4.21, 4.4
 Chapter 5 : 5.1, 5.2, 5.3, 5.4, 5.5

Unit III :
 Chapter 7 : 7.1, 7.2
 Chapter 10 : 10.1, 10.2, 10.3, 10.31, 10.7
 Chapter 11 : 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7

REFERENCES :

[6] Integral calculus by Shanti Narayan and P. K. Mittal, S. Chand and Comp. Ltd.

B.A/B.Sc. F.Y. Semester- II
Paper IV (MT 104): Geometry
(No. of periods: 60 Max.Marks:50)

Unit I: Co-ordinates: Direction cosines of a line, a useful relation, relation between direction cosines, Projection on a straight line, projection of a point on a line, projection of a segment on another line, projection of a broken line, projection of the join of two lines. angle between two lines.

The Plane: Theorem, converse of the preceding theorem, Transformation to the normal form, direction cosines of the normal to a plane, angle between two planes, determination of plane under given conditions, intercept form of the equation of a plane, plane through three points, system of planes, two sides of a plane, length of perpendicular from a point to a plane, bisectors of angle between two planes.

Unit II: Right line: Representation of line, equation of line through a given point drawn in a given direction, equation of a line through two points, two forms of the equation of line, Transformation from the unsymmetrical to the symmetrical form, angle between a line and a plane, condition for a line to lie in a plane, coplanar lines, condition for coplanarity of lines, Number of arbitrary constants in the equation of straight line, determination of lines satisfying given conditions, the shortest distance between two lines, length of the perpendicular from a point to a line.

Transformation of Co-ordinates: Introduction, change of origin, change of the direction of a axes, relation between direction cosines of three mutual perpendicular lines.

Unit III: The Sphere: Definition, equation of sphere, General equation of a sphere, The sphere through four given points, sphere, plane section of a sphere, intersection of two spheres, sphere with a given diameter, equation of a circle, sphere through a given circle, intersection of a sphere and a line, Power of a point, equation of a tangent plane, plane of contact, the polar plane, pole of plane, some results concerning poles and polars, angle of intersection of two spheres, condition for the orthogonally of two spheres.
Cones, Cylinders: Definition, equation of a cone with a conic as a guiding curve, The right circular cone, definition, the cylinder, equation of a cylinder, the right circular cylinder, definition.

TEXT BOOK :

Analytical Solid Geometry, By Shanti Narayan and Dr. P.K. Mittal

(S. Chand Publication.)

Scope : Unit I : Chapter 1 : Art. 1.6, to 1.8

Chapter 2 : Art. 2.1 to 2.7

Unit II : Chapter 3 : Art. 3.1 to 3.7.

Chapter 5 : Art. 5.1 to 5.2

Unit III : Chapter 6 : Art. 6.1 to 6.7.

Chapter 7 : Art. 7.1, 7.1.1, 7.6, 7.6.1, 7.7, 7.7.1, 7.8, 7.8.1.

REFERENCES

1) Analytical Geometry of two and three dimentions, By Quizi Zameeruddin: Narsosa Pub.

2) Text Book on Coordinate Geometry, By Gorakh Prasad, H.C. Gupta; Pothishala Pub.

3) Lecturers on Vector Analysis and Geometry, By T.M. Karde and M.S. Bendre.

4) Analytical Geometry of Three dimensions, By N. Saran and R.S. Gupta, Pothishala Pub.

5) A Text Book of Analytical Geometry of Three dimensions, By P. K. Jain and Khalil Ahmad, Wiley Eastern Ltd.

6) Elementary Treatise on Co-ordinate Geometry of three Dimensions By R.J.T. Bell, Mac Millan India Ltd.

7) Mathematics for Degree Students, By P. K. Mittal, S. Chand and Co. Delhi.
N.B.: PRACTICAL PAPER IS ONLY FOR B.Sc. Students.

Section 1: Introduction to MATLAB: MATLAB Programming language, Built-in Functions, Graphics, computations, External interface and Tool boxes. Basics of MATLAB: MATLAB windows, desktop, command window, workspace, Figure and Editor Windows, Input-output, File types, platformdependence, Printing. Programming in MATLAB: Scripts and functions. Script files, function files: Executing of function, writing good functions, sub functions, compiled functions.

Section 2: Interactive computation: (MATRICES) Matrices and Vectors, input, indexing, matrix manipulation, creating vectors. Matrix and Array operations, Arithmetic operations, Relational operations, logical operations, Elementary math functions, matrix functions, character string. Command line Functions, Inline functions, Anonymous functions. Built-in functions, finding the determinant of matrix, finding eigenvalues and eigenvectors. Saving and loading Data, Importing data files, recording a session. Applications: - Linear Algebra. Solving a linear system, Gaussian elimination, Finding eigenvalues and eigenvectors, matrix factorization, advanced topics.

Section 3: Plotting of Graphs: - Plotting simple Graphs. Graphics: - Plotting of 2D graphs, Using subplot for multiple graphs, 3DPlots (Drawing of different Geometrical objects), saving and Printing.

Reference Book: (for MATLAB Users).

Scope
- Chapter 1: Art. 1.1, 1.6
- Chapter 3: art 3.1, 3.2, 3.4, 3.5, 3.6, 3.7
- Chapter 4: 4.1, 4.2
- Chapter 5: Art. 5.1
- Chapter 6: Art 6.1, 6.2, 6.3.

NOTE:
1) Section 1 is introductory part, so no question to be set for Examination.
2) Record book must contain 10 practical on section 2 and 10 Practical on section 3.
B.Sc. F.Y. PRACTICAL PAPER
(Annual pattern)

WITH EFFECTIVE FROM June 2013
(LIST OF PRACTICALS)

N.B.: PRACTICAL PAPER IS ONLY FOR B.Sc. Students
Any twenty of the following practical problems:

1) To enter the Matrix A and pick-out following entries from it: $A_{11}, A_{21}, A_{22}, A_{23}$.
2) To find the transpose of a matrix.
3) For two matrices A and B, to find $A + B$ & $B + A$ and to verify whether the matrix addition is commutative.
4) For a square matrix A to find A^2, A^3, A^4, A^5.
5) For two matrices A and B, confirmable for multiplication from both sides, to find AB and BA.
6) To verify the associatively of matrix addition.
7) To verify both left distributive law and right distributive law.
8) To find the determinant of a square matrix.
9) To find the inverse of a square matrix.
10) To find the rank of the matrices.
11) To solve the system of linear equations whose matrix equation is $Ax = b$ and check the solution.
12) To find the eigen values of a square matrix.
13) To find the eigen vectors of a square matrix.
14) To find the characteristic polynomial of a square matrix.
15) To find the conjugate of a matrix.
16) To plot $f(x) = e^{\frac{-x^2}{10}} \sin x$ for x between 0 and 20.
17) To plot $r(\theta) = 1 + 2\sin^2(2\theta)$ for $0 < \theta < 2\pi$.
18) To plot the contours of $z = \cos x \cos y \exp\left(-\sqrt{x^2 + y^2}/4\right)$ over the default domains.
19) To plot the surface for $z = \frac{-5}{(1+x^2+y^2)}$ over the domain $|x| < 3$ and $|y| < 3$.
20) To plot multiple graphs $y_1 = \sin t$, $y_2 = t$, $y_3 = 1-\frac{t^3}{3!}+\frac{t^5}{5!}$ in same figure window.
21) To plot $x = e^{-t}$, $y = t$, $0 \leq t \leq 2\pi$.
22) To plot $f(t) = t \sin t$, $0 \leq t \leq 10\pi$.
23) To plot the surface \(z = \frac{xy(x^2 - y^2)}{x^2 + y^2} \), \(-3 \leq x \leq 3, \ -3 \leq y \leq 3\) by computing the values of \(z \) over 50 x 50 grid on specified domain.

24) To draw a cylinder with base radius \(r = 40 \) and top radius \(r = 60 \)

25) To plot the unit sphere.

26) To draw discrete data plot with stems: \(x = t, y = t \sin(t), z = e^{t/10} - 1 \) for \(0 \leq t \leq 6\pi \).

27) To draw the MATLAB logo (\(z = \cos x \cos y \cdot e^{-\frac{\sqrt{x^2+y^2}}{4}} \) for \(|x| \leq 5, |y| \leq 5\)).

28) To draw the pie chart for the world population by continents for data.

29) To draw the bar chart for the world population by continents for data.

30) To plot \(x = t, y = e^t, 0 \leq t \leq 2\pi \).

.