ा सा विया या विमुक्तये ।। स्वामी रामानंद तीर्थ मराठवाडा विद्यापीठ, नांदेड

"ज्ञानतीर्थ" परिसर, विष्णुपूरी, नांदेड - ४३१६०६ (महाराष्ट्र)

WAMI RAMANAND TEERTH MARATHWADA UNIVERSITY NANDED

"Dnyanteerth", Vishnupuri, Nanded - 431606 Maharashtra State (INDIA)

Established on 17th September 1994 - Recognized by the UGC U/s 2(f) and 12(B), NAAC Re-accredited with 'A' Grade

ACADEMIC (1-BOARD OF STUDIES) SEC

Phone: (02462) 229542 Fax : (02462) 229574

Website: www.srtmun.ac.in

E-mail: bos.srtmun@gmail.com

प्रस्तुत विद्यापीठाच्या संकुलातील विज्ञान व तंत्रज्ञान विद्याशाखेतील पदव्युत्तर स्तरावरील प्रथम वर्षाचे CBCS Pattern नुसारचे अभ्यासक्रम शैक्षणिक वर्ष २०१९–२० पासून लागू करण्याबाबत.

प रि प त्र क

या परिपत्रकान्वये सर्व संबंधितांना कळविण्यात येते की, दिनांक ०८ जून २०१९ रोजी संपन्न झालेल्या ४४व्या मा. विद्या परिषद बैठकीतील ऐनवेळचा विषय क्र.११/४४–२०१९ च्या ठरावानुसार प्रस्तुत विद्यापीठाच्या प्रस्तुत विद्यापीठाच्या संकुलातील विज्ञान व तंत्रज्ञान विद्याशाखेतील पदव्युत्तर स्तरावरील प्रथम वर्षाचे खालील विषयांचे C.B.C.S. (Choice Based Credit System) Pattern नुसारचे अभ्यासक्रम शैक्षणिक वर्ष २०१९–२० पासून लागू करण्यात येत आहेत.

- 1. Botany
- 2. Certificate Course in Industrial Safety, Health and Environmental Management (SHM)
- 3. Chemistry
- 4. Computer Application
- 5. Computer Network
- 6. Computer Science
- 7. Geophysics
- 8. Mathematics
- 9. M.C.A.
- 10. Microbiology
- 11. Physics
- 12. Zoology

सदरील परिपत्रक व अभ्यासक्रम प्रस्तुत विद्यापीठाच्या www.srtmun.ac.in या संकेतस्थळावर उपलब्ध आहेत. तरी सदरील बाब ही सर्व संबंधितांच्या निदर्शनास आणून द्यावी.

'ज्ञानतीर्थ' परिसर,

विष्णुपुरी, नांदेड – ४३१ ६०६.

जा.क्र.: शैक्षणिक—१/परिपत्रक/संकुले/पदव्युत्तर—सीबीसीएस अभ्यासक्रम/२०१९—२०/४६५

दिनांक: ११.०७.२०१९.

प्रत माहिती व पुढील कार्यवाहीस्तव :

- १) मा. कुलसचिव यांचे कार्यालय, प्रस्तुत विद्यापीठ.
- २) मा. संचालक, परीक्षा व मूल्यमापन मंडळ यांचे कार्यालय, प्रस्तुत विद्यापीठ.
- ३) मा. संचालक, सर्व संबंधित संकुले, विद्यापीठ परिसर, प्रस्तुत विद्यापीठ.
- ४) साहाय्यक कुलसचिव, पदव्युत्तर विभाग, प्रस्तुत विद्यापीठ.
- ५) उपकुलसचिव, पात्रता विभाग, प्रस्तुत विद्यापीठ.

६) सिस्टम एक्सपर्ट, शैक्षणिक विभाग, प्रस्तुत विद्यापीठ.

स्वाक्षरित/—

उपकुलसचिव शैक्षणिक (१–अभ्यासमंडळ) विभाग

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED (NAAC Re-accredited with 'A' Grade)

School of Computational Sciences

CURRICULUM FRAMEWORK AND SYLLABUS

FOR OUTCOME BASED EDUCATION IN

Master of Computer Applications (M.C.A) Degree Program

Program Code: SCS-S-MCA-PG (13-2-4-01) (For Campus Reference only)

FOR THE STUDENTS ADMITTED FROM THE

ACADEMIC YEAR 2019-2020 ONWARDS

www.srtmun.ac.in

BOS meeting approved: __/_/2019

Approved in _____ Academic Council meeting on __/__/2019

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY SCHOOL OF COMPUTATIONAL SCIENCES

VISION

"Enlightened Student: A Source of Immense Power"

MISSION

"Swami Ramanand Teerth Marathwada University pledges itself to uphold zealously its mission of promoting acquisition and dissemination of knowledge through fearless and sustained pursuit of excellence aimed at molding personalities of students entering its portals to grow with an upright character filled with enlightenment and to be the value adhering members of a just and humane society".

As a Department, We are committed to

- Achieve academic excellence in Computer Applications through innovative teaching and learning processes.
- To prepare the students to be professionally competent to face the challenges in the industry.
- Promote inter-disciplinary research among the faculty and the students to create state of art research facilities.
- To promote quality and ethics among the students.
- Motivate the students to acquire entrepreneurial skills to become global leaders.

The School of Computational Sciences exists since inception of the University and offers Masters, M.Phil. and Ph.D. programs.

Master Degree Programs, M.Sc.(CS), M.Sc.(CN) and M.Sc.(CA), being officered are two years full time post graduate programs revised with industry expectations. These all programs have four semesters, which are normally completed in two years.

The MCA program is a three-year full time AICTE approved program which is normally completed in six semesters.

Above all programs are offered as per CBCS (Choice Based Credit System) pattern, in which within discipline and cross discipline migration choices of courses are given to the students under open electives and subject electives. The students can choose open electives from the same program or from other programs of the same school or from other programs of other schools. The Evaluation of performance of a student for the course under Choice based Credit System (CBCS) is based on principle of continuous assessment through internal and external evaluation mechanisms. CBCS policy had emphasis given on imparting skills to students.

The eligibility criteria and fees structure shall be same as that of Campus Prospectus.

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY

SCHOOL OF COMPUTATIONAL SCIENCES

Draft Report on CBCS enabled syllabi of MCA Program.

In compliance with the Hon"ble Vice Chancellor"s directions, resolution passed by the Hon"ble Management Council and in the light of circular being communicated by the Deputy Registrar, Academics, a committee comprising of the Director of the School, Head Department and three faculties from the school have strived hard for reframing and revision the syllabi of 3 years full time MCA course which exists in the school of Computational Sciences.

The committee members agreed unanimously to adhere the guidelines given by AICTE, New Delhi were observed for MCA program well as SRTMUN policy draft on Choice Based Credit System – CBCS, being circulated to the school MCA program. The model CBCS syllabus framed by UGC, New Delhi was also reviewed. It was decided to have at least one open elective as a compulsory course in the program, in all the semesters. Accordingly, the interdisciplinary applications of Computers, IT, Scientific computing allied courses were found out across the various disciplines and relevant courses have been spread over all semesters of all the streams with two internal credits in each semester. The Communication Skills (given in UGC Scheme as a compulsory Ability Enhancement Course (AECC) to be taught) was also introduced as an Open Elective in early semesters.

While restructuring the courses to fit into the CBCS pattern, care has been taken to consider local needs placed in a national context so as to fulfill global demands. Due care is taken to introduce application oriented interdisciplinary learning. Therefore, students pursuing post-graduation degrees over here, in specific courses are encouraged to imbibe knowledge and skills which enable all round personality development, skill enhancement and in-depth learning of technology platforms. Under the CBCS pattern, students would post graduate MCA program with a total number of 26 credits which includes minimum 05 compulsory credits from theory subjects, 4 credits from practical, and 2 credits from University recognized MOOC/ (NPTEL / SWAYAM / others) OR Intra / Inter Departmental / School Open Electives Wherein the students would be required to choose the courses from the choices available in each semester from each up to 5th semester and at the 6th semester Major Project Development Activity of 25 credits.

The directions given by Hon"ble Pro Vice Chancellor sir reading intra school and inter school open electives was specifically accepted by the committee and due care is taken to embed them. Accordingly, horizontal and vertical migration among MCA programs with other programs offered by other schools in the campus is allowed.

The discussions with Hon"ble Pro Vice Chancellor sir lead to following specific agenda of the CBCS syllabi

1. To provide mobility and flexibility for students within and outside the Computational Science School as well as to migrate between institutions

2. To help students to learn at their own pace

- 3. To have provision for audit and credit courses
- 4. To impart more job-oriented skills to students
- 5. To make any course multi-disciplinary in approach

In order to move ahead on the agenda, the committee members continuously sat together on all week days and finalized all semesters one by one. There were discussions on a uniform structure per semester, which is likewise to be extended across all semesters so as to make a MCA program worth of 155 credits, five semesters have 26 credits each and 6^{th} semester of 25 credits.

Accordingly, 05 theory courses of 04 credit each, 02 Lab courses of 02 credits each and 01 open elective course of 02 credits, were drafted for Semester 01 to Semester 03 of MCA program. These courses are marked as compulsory foundation and core courses which at as brush up / revision courses for entry level students. This was intentionally done as the student population coming to school primarily comes from Permanent Non-Grant colleges.

The fourth and fifth semesters have compulsory and departmental elective courses to be completed, with open electives. These are program specific courses which enable in depth learning in the allied courses. The electives are designed as per the relevant demand of a course in IT industry / Research area. In fourth semester, there are 03 theory courses of 04 credits each, 02 specialized electives of 04 credits, 02 Lab courses of 02 credits and 01 open elective of 02 credits. This also sums up to 26 credits.

In the fifth semester there are 03 theory courses of 04 credits each, 02 specialized elective of 04 credits, 02 Lab courses of 02 credits each, 01 mini project activity of 02 credits, This also sums up to 26 credits.

In the Sixth semester, A major project development activity was intentionally introduced for 25 credits so as give a real time feel of industry activities to the students. A unified course numbering system was used for proper numbering of all courses, viz,

Foundation Course Core Courses Program Specific Courses Department Specific Elective Subject for all programs Mini and Major Project

Open Elective

The definition of credit in CBCS draft is finally taken as per the SRTMUN- CBCS policy, as a weightage to a course, to be given in relation to the hours assigned for the course. Generally, one hour per week has one credit. For viability and conformity to the guidelines credits are awarded irrespective of the teaching hours.

First three semesters have compulsory foundation and core courses along with open electives. The fourth and fifth semesters of the program consists of three major components. They are program specific core courses, elective courses and department specific elective courses. Also, a compulsory component of open elective is mandatory per semester.

A core course is the course offered by the parent program, totally related to the major subject, components. Elective Course is also offered by the parent program whose objective is to provide choice and flexibility within the program. The student can choose his/her elective paper. Elective is related to the major subject. The difference between core course and elective course is that there is choice for the student. The program is at liberty to offer certain number of elective courses any semester.

The Departmental elective course is an inter program course offered by a program for the students belonging to other programs. The objective is to provide mobility and flexibility outside the parent program. This is introduced to make every course multi-disciplinary in nature. It is to be chosen from a list of courses offered by various programs in the school. The list is given in the syllabus copy.

The open electives are of application oriented and inter-disciplinary in nature. These courses can be offered by the concern program or concern school for the students in same program / school or for other schools. These have 02 internal credits.

All faculties were told to outline the specific topics of their interest and elaborate them further with objectives and outcome. The final version of syllabi is outcome oriented which smoothes the understanding of students regarding the skills he/she will be getting after the completion of the course. This has also made faculties to be specialized of the courses being drafted by them.

In order to see the employability of the skills being imparted through the revised syllabi, the syllabi draft was forwarded to Industry experts. Due care is taken to incorporate suggestions and modifications given by these experts. These experts are 1) Dr. Parvin Pawar, Philips Research Lab, Bangalore 2) Mr. Sanjay Kurundkar, Creve Info Tech Ltd, Pune 3) Mr. Ashish Tendulakr, Google Inc, Pune

UGC and AICTE guidelines regarding CBCS syllabi workout were duly considered while framing underlined syllabi. Efforts are made for incorporating skill enhancement components in the underlined syllabi. In order to offer more choices for learning, the certified MOOC courses, Spoken tutorial courses and SWAYAM courses are considered equivalent for open electives. However, in these cases, students must produce certificate towards successful completion of the said courses during the course year in order to claim credits for open electives.

It was decided to pass this draft for final approval from the Administrative Authorities including Dean of the faculty, Hon"ble Vice Chancellor sir,

Submitted with respects

1. Dr. G.V. Chowdhary, Director

2. Dr. S. D. Khamitkar, HOD

3. Dr. H. S. Fadewar, Assistant Professor

4. Dr. P. U. Bhalcahndra, Assistant Professor

5. Mr. M. R. Mahamune, Assistant Professor

Final draft of syllabi was approved by all the faculties in the school.

1. Dr. N. K. Deshmukh, Assistant Professor

1. Dr.S. N. Lokhande, Assistant Professor

2. Mr. S. R. Mekewad, Assistant Professor

3. Ms. A. H. Sable, Assistant Professor

4. Mr. M. S. Darak. Assistant Professor

5. Mr. M. D. Wangikar, Assistant Professor

Place: Nanded

Date:

Program Educational Objectives (PEO)

Post graduates of MCA program will be

- **PEO1**: Utilizing strong technical aptitude and domain knowledge to develop smart software solutions for the upliftment of society.
- **PEO2**: Applying research and entrepreneurial skills augmented with a rich set of communication, teamwork and leadership skills to excel in their profession.
- **PEO3**: Showing continuous improvement in their professional career through life-long learning, appreciating human values and ethics.

Graduate Attributes for MCA Program (GA)

1. Computational Knowledge:

Apply domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.

2. Problem Analysis:

Identify, formulate, research literature, and solve *complex* computing problems reaching substantiated conclusions using fundamental principles of computing sciences.

3. Design /Development of Solutions:

Design and evaluate solutions for *complex* computing problems that meet specified needs with appropriate consideration for cultural, societal, and environmental considerations.

4. Conduct Investigations of Complex Computing Problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern Tool Usage:

Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to *complex* computing activities, with an understanding of the limitations.

6. Professional Ethics:

Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practice.

7. Life-long Learning:

Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.

8. Project management and finance:

Demonstrate knowledge and understanding of the computing and management principles and apply these to one's own work, to manage projects and in multidisciplinary environments.

9. Communication Efficacy:

Communicate effectively with the computing community, and with society at large, about *complex* computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.

10. Societal and Environmental Concern:

Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.

11. Individual and Team Work:

Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary environments.

12. Innovation and Entrepreneurship

Identify a timely opportunity and using innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large.

Program Outcomes (PO) for Master of Computer Applications (2019-2020)

On completion of MCA program, the students are expected to

- **PO1:** Apply knowledge of computing fundamentals, computing specialization, mathematics, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.
- **PO2:** Identify, formulate, research literature, and solve complex computing problem searching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
- **PO3:** Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- **PO4:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- **PO5**: Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
- **PO6:** Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practice.
- **PO7:** Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.
- **PO8:** Demonstrate knowledge and understanding of the computing and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO9:** Communicate effectively with the computing community, and with society at large, about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.
- **PO10:** Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.
- **PO11:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary environments.
- **PO12:** Identify a timely opportunity and using innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large.

PEO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1												
PEO2												
PEO3												

PO-GA MAPPING:

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
PO1												
PO2												
PO3												
PO4												
PO5												
PO6												
PO7												
PO8												
PO9												
PO10												
PO11												
PO12												

Credit Distribution:

Sr. No.	Category of courses	Credits	Percentage of Credits to Total Credits
1	Basic Sciences	12	7.74%
2	Humanities and Social Sciences	08	5.16%
3	Management Practices	12	7.74%
3	Program Core- Theory	52	33.55%
4	Program Core - Practical's	18	11.61%
5	Specific Electives Theory cum	18	11.61%
5	Practical Open Elective	00	5 160/
5	Open Elective	08	5.10%
6	Project	27	17.42%
	Total Credits	155	100%

Basic Science (BS) & Humanities & Social Sciences Courses:

Semest er	Name of the Course	Category	Credits
1	Mathematical Foundations	BS	4
2	Probability & Statistics	BS	4
3	Graph Theory	BS	4
		BS Total Credits	12
1	Programming Logic	HSS	4
2	Oral & Written Communication Skills	HSS	4
		HSS Total Credits	8

Program Core, Elective & Practical Courses:

Sem	No. of	Credits	No. of	Credits	No. of	Credits	No. of	Credits	Total
	Core		Core		Specific	2	Open		Credits
ester	Theory		Practical		Elective		Elective	•	
	Courses		Courses		Courses	6	Courses		
т	05	20	02	04			01	02	26
1	03	20	02	04	-	-	01	02	20
II	05	20	02	04	-	-	01	02	26
III	05	20	02	04	-	-	01	02	26
IV	03	12	02	04	02	08	01	02	26
V	03	12	03	06	02	08	-	-	26
VI	Major P	roject		1	1		1		25
							Tot	al Credits	155
	Total	84	Total	22	Total	16 '	Fotal	08	130
	Credits		Credits		Credits		Credits		
I to	for		for	1	for	t	for		
V	Core		Practical	5	Specific		Open		
	Courses		Courses]	Elective]	Elective		
					Courses		Courses		
VI	Major								25
	Project								
		1					Tot	al Credits	155

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED SCHOOL OF COMPUTATIONAL SCIENCES

Scheduling of Courses

Semester	ter Theory Practic					Practical		Credits	
	MCA 101	MCA 102	MCA 103	MCA 104	MCA 105	MCA 106	MCA 107	MCA 108	
т	Programming	Data	Computer	Introduction	Mathematical	Lab-1	Lab-2	Open	26
I	Logic	Structure	Organization &	to Mgt.	Foundation	С	COA	Elective	20
		using C	Architecture	Functions		Programming.			
	MCA 201	MCA 202	MCA 203	MCA 204	MCA 205	MCA 206	MCA 207	MCA 208	
п	SAD	DA A using	Management	Prob. & Stat.	Oral & Written	Lab-3 SAD	Lab-4	Open	26
11		C++	Information		Comm. Skills		C++	Elective	20
			System				Programming.		
	MCA 301	MCA 302	MCA 303	MCA 304	MCA 305	MCA 306	MCA 307	MCA 308	
	Software	Visual	Data	Relational	Graph Theory	Lab-5 Visual	Lab-6 RDBMS	Open	
III	Engineering	Programming	Communications	Database		Programming		Elective	26
		Tools.	& Computer	Management		Tools.			
			Networks	System					
	MCA 401	MCA 402	MCA 403	MCA 404	MCA 405	MCA 406	MCA 407	MCA 408	
IV	Compiler	Java	Operating	Elective-1	Elective-2	Lab-7 Java	Lab-8	Open	26
	Designing	Programming.	Systems			Programming.	Lunux OS	Elective	
	MCA 501	MCA 502	MCA 503	MCA 504	MCA 505	MCA 506	MCA 507	MCA 508	
V	Cryptography	Data Mining	Theory of	Elective-3	Elective-4	Lab-9 DM &	Lab-10	Mini	26
	& Net. Sec.	& DW	Computation			DW	Elective-4	Project	
				MCA 601: Projec	t Development	•			
	Synopsis	Progress	Progress Report-	Progress	Progress	Project	Via voice		
VI	Submission	Report-1	2	Report-3	Report-4	Dissertation	Project		25
		System	Designing &	Coding and	Testing &	Documentation	Presentation		
		Analysis	Scheduling	modeling	Implementation				
								Total Credits	155

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED SCHOOL OF COMPUTATIONAL SCIENCES Master of Computer Applications (M.C.A) Degree Program

COURSES OF STUDY

(For the candidates admitted from 2019-2020 onwards)

FIRST SEMESTER

Course			I	No. Of	f						
Course	Name of Course	Category	Hou	ırs/W	eek	Credits					
Code			L	Т	Р						
	Theory										
MCA 101	Programming Logic	HSS	4	1	-	4					
MCA 102	Data Structure using C	PC	4	1	-	4					
MCA 103	Computer Organization &	PC	4	1		Λ					
	Architecture	rC	4	1	-	4					
MCA 104	Introduction to Management	MD	4	1		Λ					
	Function	IVIE	4	1	-	4					
MCA 105	Mathematical Foundation	BS	4	1	-	4					
	Practic	al									
MCA 106	Lab-1 C Programming	PCL	-	-	6	2					
MCA 107	Lab-2 Computer Organization &	DCI			6	2					
	Architecture	PCL	-	-	0	2					
	Open Elective										
MCA 108	Open Elective	OE	2	1	-	2					
		Total	22	06	12	26					

SECOND SEMESTER

Course		C 4] 	No. Of	[
Code	Name of Course	Category	HOL	Irs/ w	еек	Credits			
			L	I	P				
	Theor	<u>y</u>							
MCA 201	System Analysis and Design	PC	4	1	-	4			
MCA 202	Design Analysis & Algorithm	DC	4	1		1			
	using C++	PC	4	1	-	4			
MCA 203	Management Information System	MP	4	1	-	4			
MCA 204	Probability & Statistics	BS	4	1	-	4			
MCA 205	Oral and Written Communication	UCC	4	1		1			
	Skills	пээ	4	1	-	4			
	Practic	al							
MCA 206	Lab-3 C++ Programming	PCL	-	-	6	2			
MCA 207	Lab-4 Data Communication	PCL	-	-	6	2			
	Open Elective								
MCA 208	Open Elective	OE	2	1	-	2			
		Total	22	06	12	26			

THIRD SEMESTER

Course			I	No. Of	[
Course	Name of Course	Category	Hours/Week			Credits				
Code			L	Т	Р					
Theory										
MCA 301	Software Engineering	PC	4	1	-	4				
MCA 302	Visual Programming Tools	PC	4	1	-	4				
MCA 303	Data Communication and	DC	4	1		4				
	Computer Networks	PC	4	1	-	4				
MCA 304	Relational Database Management	MD	4	1		4				
	System	IVIP	4	1	-	4				
MCA 305	Graph Theory	BS	4	1	-	4				
	Practic	al								
MCA 306	Lab-5 Visual Programming	PCL	-	-	6	2				
MCA 307	Lab-6 RDBMS	PCL	-	-	6	2				
	Open Elective									
MCA 308	Open Elective	OE	2	1	-	2				
		Total	22	06	12	26				

FOURTH SEMESTER

Course	Name of Course	Category	l Hot	No. Of 1rs/W	Credits					
Code			L	Т	Р					
Theory										
MCA 401	Compiler Designing	PC	4	1	-	4				
MCA 402	Java Programming	PC	4	1	-	4				
MCA 403	Operating System Concepts	PC	4	1	-	4				
MCA 404	Elective-1	PE	4	1	-	4				
MCA 405	Elective-2	PE	4	1	-	4				
	Practic	al								
MCA 406	Lab-7 Java Programming	PCL	-	-	6	2				
MCA 407	Lab-8 Advance Data Structure	PCL	-	-	6	2				
	Open Elective									
MCA 408	Open Elective	OE	2	1	-	2				
		Total	22	06	12	26				

FIFTH SEMESTER

Course	Name of Course	Category	l Hot	No. Of 1rs/W	Credits					
Code			L	Т	Р					
Theory										
MCA 501	Cryptography & Network Security	PC	4	1	-	4				
MCA 502	Data Mining & Data Warehousing	PC	4	1	-	4				
MCA 503	Theory of Computation	PC	4	1	-	4				
MCA 504	Elective-3	PE	4	1	-	4				
MCA 505	Elective-4	PE	4	1	-	4				
	Practic	al								
MCA 506	Lab-7 Java Programming	PCL	-	-	6	2				
MCA 507	Lab-8 Based on Elective-4	PCL	-	-	6	2				
MCA 508	Mini Project	PC	-	-	6	2				
		Total	20	05	18	26				

SIXTH SEMESTER

Course	Name of Course	Category		No. Of 1rs/W	Credits	
Coue			L	Т	Р	
MCA 601	Major Project Activity	PC	-	-	12	25
		Total	-	-	12	25

PC	: Program Core	То	otal
BS	: Basic Science		BS : Basic Science
HSS	: Humanities & Social Science	4 3 2 3	 HSS : Humanities and Social Science MP : Management Practices
MP	: Management Practices		PC : Program Core
PCL	: Program Core Lab	11 14	PCL Program Core Lab
PE	: Program Elective		PE : Program Elective
OE	: Open Elective		OE : Open Elective
L	: Lecture		
Т	: Tutorial		
Р	: Practical		

Notes

- 1. For Theory, 04 credits means 02 internal credits and 02 external credits
- 2. For Practical, 02 credits means 01 internal and 01 external credits
- 3. For Mini Project Development Activity, 02 credits are purely internal
- 4. For Major Project Development Activity, 12 Internal and 13 External Credits
- 5. For Open electives, 02 credits are purely internal credits
- 6. Student has to earn at least 02 credits in any semester from the interdisciplinary open elective course offered by other school.
- 7. * Internal Assessment evaluation pattern will differ from subject to subject and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern ** External Assessment Examination will be conducted for maximum marks of 50 marks
- 8. for the award of end semester examination marks

Code: MCA101	Programming Logic	Credits: 04							
Course Objectives:									
This course provides a complete introduction to programming in C, including both ANSI C									
and Kernighan & Ritchie C. In addition to covering basic syntax and semantics, the course									
emphasizes problem solving methodology and modular programming techniques.									
Course Outcome:									
Upon successful completion of	f this course students will understand t	the facility in using							
common programming constru	ins course, students will understand to	Facility in performing							
stream input/output: Facility in	incorporating auxiliary libraries into a	a C program							
CO1: Describe the reason why	different constructs are available for it	teration such as "for"							
loops "do while" loops	unreferit constructs are available for f	teration, such as Tor							
CO^2 : Demonstrate the different	nce between iteration and recursion in t	terms of C programming							
CO3: Develop C programs for	arrays and linked lists	ernis or e programming							
CO4: Develop C programs for	Data structure concept with functions								
CO5: Summarize the Hardwar	e interaction using Port I/O								
CO6: Develop C programs for	File Management concept								
Unit-1: Introduction	Unit-1: Introduction								
What is a Programming Langu	age, What is a Compiler, C Syntax and	d Constructs							
Writing C Programs Gearing u	p with logic and algorithms, flowchart	s. Building logic for							
writing C Programs.									
Unit-2: C programming c	onstructs								
Basic input and Output in C, y	variables, declarations, operators, funct	ions							
Steps to Compiling a Program	, Compilation Phases, Multi-File Com	pilation, Header Files							
The Standard Library									
Unit-3: Advanced C prog	ramming features								
Control structures and Loops H	Pointers Addresses and Memory								
	onitors, rudresses and memory								
Unit-4: Parameter passing	g	i							
Passing Parameters by Address	Passing Parameters by Address, Arrays, Address Structures, Pointers and Arrays								
Text Books:	Text Books:								
1. The C Programming L	anguage (2nd edition), Brian W. Kernighan, D	ennis M. Ritchie, Prentice							
Hall Software Series.	Hall Software Series.								
2. C: The Complete Reference Books	erence by Herbert Schildt.								
1. Programming in ANSI	1. Programming in ANSI C by E Balagurusamy								
2. Let Us C by Yashavan	tKanetkar								

Mappi	Mapping with Program Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	S	М	S	-	М	-	-	М	-	-
CO3	S	S	S	М	S	-	-	-	М	-	-	-

CO4	S	S	S	М	S	-	М	-	-	-	-	-
CO5	М	-	-	-	-	-	М	-	-	М	-	-
CO6	S	S	S	М	S	-	-	-	-	-	-	-
S- Strong; M-Medium; L- Low												

Code: MCA 102

Data Structures using C

Course Objectives:

- 1. IT will demonstrate familiarity with major algorithms and data structures.
- 2. Analyze performance of algorithms.
- 3. Choose the appropriate data structure and algorithm design method for a specified application.
- 4. Demonstrate understanding of the abstract properties of various data structures such as stacks, queues, lists, trees and graphs.
- 5. Use various data structures effectively in application programs.
- 6. Demonstrate understanding of various sorting algorithms, including bubble sort, insertion sort, selection sort, merge sort, quick sort and heap sort.
- 7. Understand and apply fundamental algorithmic problems including Tree traversals, Graph traversals, and shortest paths.
- 8. Demonstrate understanding of various searching algorithms.
- 9. Compare different implementations of data structures and to recognize the advantages and disadvantages of the different implementations.

Course Outcome:

CO1: Explain the organization and operations of data structures Stack, Queues, Trees, Graphs, Heaps and Hash tables.

CO2: Compare and contrast the functionalities and applications of different data structures CO3: Demonstrate specific search and sort algorithms using data structures given specific user requirements.

CO4: Apply the operations of data structures in designing software procedures based on specific requirements

CO5: Assess the applicability of given data structures and associated operations to real time computer applications

CO6: Identify suitable algorithms with appropriate data structures for real time software requirements

CO7: Modify the existing operations of data structures for changing needs of the software requirements

Unit-1: Introduction to Algorithm

Data, Variables (Local and Global), Data types, arrays Introduction to Algorithm, The efficiency of Algorithms, Analysis of Algorithms, overview of Space and Time Complexities, some fundamental algorithms for exchange, counting, summation

Unit-2: Introduction to data structures

Introduction to data structures, Basic terminology, Primitive data structure operations Overview of STACKS, QUEUES, LINKED LISTS, BINARY TREES and GRAPHS (Basic Definition, Representations, Characteristics, Types, Applications)

Unit-3: Tree and Graph

Minimum Spanning Trees, Growing a minimum spanning tree, The algorithms of Kruskal and Prim Graphs : DFS and BFS algorithms associated with Graphs, Single-source shortest Paths, The Bellman-ford algorithm

Unit-4: Sorting and Searching

Introduction to searching and sorting problems, Linear search, Binary search, Selection sort

, Bubble s	, Bubble sort , Insertion sort , Merge sort, Complexities of searching and sorting algorithms								
Unit-5:	Divide and Conquer Techniques								
Divide ar	Divide and conquer, General method, Binary search, Merge sort, Strassen"s matrix								
multiplica	tion								
Unit-6:	Advanced Data Structure								
Introduction	on to Greedy method, The general method, Container loading knapsack problem,								
Introduction	on to Dynamic Programming, General method, Introduction to NP Theory								
Text Bool	KS:								
1.	Fundamentals of Computer Algorithms- Ellis Horowitz, Satraj Sahani, University								
	Press								
2.	Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman,								
	Original edition, Addison-Wesley, 1999, Low Priced Edition.								
Reference	Reference Books								
1.	How to solve it by Computers- R.G. Dromey, 8th Edition, Pearson Education								
2.	Data Structures, Lipschutz, Tata McGraw Hills								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	М	-	-	-	-	-	-	-	-		-	-
CO2	М	L	-	-	-	-	-	-	-	-	-	-
CO3	S	L	-	-	-	-	-	-	-	-	-	-
CO4	S	L	М	L	L	-	М	-	-	-	-	-
CO5	S	L	М	М	L	-	S	-	-	-	-	-
CO6	S	L	М	М	-	-	S	-	-	-	-	-
CO7	S	L	М	М	L	-	S	-	-	-	-	-

 Course Objectives: 1. To have a thorough understanding of the basic structure and operation of a digital computer. 2. To study the different ways of communicating with I/O devices and standard I/O interfaces. 3. To learn the architecture and assembly language programming of 8085microprocessor. 4. To study peripherals and their interfacing with 8085 microprocessor. 								
 To have a thorough understanding of the basic structure and operation of a digital computer. To study the different ways of communicating with I/O devices and standard I/O interfaces. To learn the architecture and assembly language programming of 8085microprocessor. To study peripherals and their interfacing with 8085 microprocessor. 								
 2. To study the different ways of communicating with 1/0 devices and standard 1/0 interfaces. 3. To learn the architecture and assembly language programming of 8085microprocessor. 4. To study peripherals and their interfacing with 8085 microprocessor. 								
 3. To learn the architecture and assembly language programming of 8085microprocessor. 4. To study peripherals and their interfacing with 8085 microprocessor. 								
 4. To study peripherals and their interfacing with 8085 microprocessor. Course Outcome: 								
Course Outcome:								
Course Outcome:								
CO1: Explain about computer architecture CO2: Understanding Logic gates, flip flops and counter								
CO4: Compute simple arithmetic operations for fixed-point and Apply floating- point addition, subtraction, multiplication & division.								
CO5: Develop a base for advance micro-processors CO6: Learn the concepts of parallel processing, pipelining and inter processor								
communication. CO7: Exemplify in a better way the I/O and memory organization. CO8: Define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.								
Unit_1.								
Number system :Introduction to Number system, BCD, ASCII, Conversion of Numbers from one Number system to the other, Binary arithmetic, Signed numbers, 1"s and 2"s complement method.								
Unit 2:								
Logic Gates: Basic Logic Gates, Basic Theorems and Properties of Boolean Algebra, NAND, NOR implementation, Sum of Products, Product of Sums, Karnaugh map, Don't Care Conditions.								
Unit-3:								
Processor Organization :General Register Organization, Stack Organization, Addressing modes, Instruction codes, Instruction Formats.								
Unit-4:								
Control Unit :Register transfer and micro operations, Timing and Control, Control Memory, Micro programming, Hard wired control								
Unit-5:								
Introduction to Microprocessor : Internal Architecture, Instruction Set								
Unit-6:								
Input – Output organization :Peripheral Devices, Input /Output interface, Asynchronous Data Transfer (Strobe & Handshaking Method), Modes of Transfer,								
Text Books:								
1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw-Hill.								

2.	John P. Hayes, "Computer Architecture and Organization", Third Edition.						
3.	B. Govindarajulu, "Computer Architecture and Organization: Design Principles and						
	Applications", Second Edition, Tata McGraw-Hill.						
Reference Books							
1.	M. Morrris Mano, "Digital Logic and Computer Design", PHI.						
2.	M. Morrris Mano, "Computer system architecture" 3rd Edition, PHI/ Pearson						
	Education.						
3.	Albert Paul Malvino, Donald P. Leach, "Digital Principles and Applications", Tata						
	Mc GrawHill Pub. Company Ltd.						
4.	J.P.Hayes, "Computer Architecture and Organization" Tata Mc Graw Hill Pub.						
	Company Ltd.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	М	L	М	S	S	-		-
CO2	S	S	S	М	М	L	М	М	S	-	-	-
CO3	S	S	S	М	М	L	L	М	S	-	-	-
CO4	S	S	S	М	М	L	L	М	S	-	-	-
CO5	S	S	S	М	М	L	S	М	L	-	-	-
CO6	S	S	S	S	М	L	L	М	S	-	-	-
CO7	S	S	S	S	М	L	L	М	S	-	-	-
CO8	S	S	S	S	М	L	L	М	S	-	-	-

Code:	MCA -104 Introduction to Management Functions Credits: 04								
Course O	bjectives								
In this pap	In this paper, the domain specific knowledge from which most of the Computer applications								
arises will	be imparted. Particulars, this paper is an overview of all functional areas of								
manageme	ent namely, HRD, Marketing, Finance, Manufacturing, and Strategy, Some of thes								
topics will be taught elaborately in subsequent papers.									
Course O	putcomes								
CO1: Un	derstanding of various management concepts and contribution of various								
manageme	ent gurus.								
CO2: und	erstanding the importance of planning and controlling and how to implement it.								
CO3: Stuc	ly the motivation theories and use it in real world problems.								
CO4: und	erstanding the quality concepts and social responsibility of Business.								
Unit-1:	Introduction to Management								
Definition	, Characteristics of management, Importance of Management, Administration								
Managem	ent thoughts: Contribution of F.W. Taylor, Henry Fayol, Peter Drucker, et								
Managem	ent process school, Systems Management School,								
Unit-2:	Planning and Controlling								
Planning:	Definition, Characteristics, Nature, Importance, Types of Plans:(Standing an								
Single U	se Plans), Planning Process Controlling: Concept, Definition, Principles of								
Controllin	g, Objectives of controlling, Importance of Controlling								
Unit-3:	Organizing								
Concept,	Definition, Process of organization, Principles of organization, Authority								
Responsib	bility and Delegation, Forms of organization. Centralization and Decentralization								
^									
Unit-4:	Leadership and Motivation								
Concept of	of Leadership, Definition, Qualities of Leadership, Leadership Styles Motivation								
Meaning	and Definition. Theories of Motivation 1. Maslow's Need Hierarchy McGregor'								
Theory "X	X" and Theory "Y"								
Unit-5:	Staffing								
Human R	esource Planning, Recruitment, Selection, Training, Training and developmen								
Performan	nce appraisal methods								
Unit-6:	Quality Concepts and Social responsibility of Business								
Total Ou	ality Management, ISO, Quality Circle Social Responsibility of Business								
Definition	Responsibilities towards owners, workers, consumers, suppliers, state, societ								
etc.	,,,,,								
Text Boo	ks:								
1.	Essentials Of Management: Harold Koontz, Heinz Weihrich, Tata Mcgraw Hill.								
2.	Principles And Practice Of Management: Dr. S. C. Saxena, Sahitva Bhava								
	Publications.								
Reference	e Books								
1.	Principles Of Management: R. N. Gupta, S. Chand & Company								
L									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	М	L	М	S	S	-		-
CO2	S	S	S	М	М	L	М	М	S	-	-	-
CO3	S	S	S	М	М	L	L	М	S	-	-	-
CO4	S	S	S	М	М	L	L	М	S	-	-	-

Code:	MCA -105	Mathematical Foundations	Credits: 04							
Course Obj	jectives									
Cultivate cl	Cultivate clear thinking and creative problem solving. Thoroughly train in the construction									
and underst	anding of mathema	atical proofs. Exercise common mathematical an	guments and							
proof strates	gies.	-	-							
Course Out	tcomes									
At the end	of the course stud	lent will be able to Understand the notion of	mathematical							
thinking, ma	athematical proofs	and to apply them in problem solving. Ability t	to understand							
use of funct	ions, graphs and the	eir use in programming applications. Apply discr	ete structures							
into compu	ting problems, for	mal specification, artificial intelligence, crypto	graphy, Data							
Analysis.										
CO1: Prove	e implication probl	lems using truth table method, replacement pr	ocess,							
Anal	yze method, truth	table, technique, rules of inference method								
CO2: Obtain	n PCNF and PDNF	of given logical expression								
CO3: Check	the validity of the	verbal or symbolic arguments using rules of infe	rence							
CO4: Const	ruct verbal argumer	nts with predicates in symbolic form and also to v	validate them							
CO5: Repre	sent the given relati	ion in matrix, digraph and vice versa								
CO6: Verify	a given function is	s objective or not, and also to find composition of	f functions							
CO7: Design	n Karnaugh map to	get simplified form of a Boolean function								
CO8: Check	whether the given	grammar is regular or not using pumping lemma								
Unit-1: S	Set theory									
Sets, Venn	diagrams, Operation	ons on Sets, Laws of set theory, Power set a	and Products,							
Partitions of	sets, The Principle	e of Inclusion and Exclusion								
Unit-2:	Prepositional calcu	ılus								
Propositions	Propositions and logical operations, Truth tables, Equivalence, Implications, Laws of logic,									
Normal For	ms, Predicates and	Quantifiers, Mathematical Induction								
Unit-3: 1	Relations and func	tions								
Relations, F	Paths and Digraphs	s, Properties and types of binary relations, C	Operations on							
relations, Cl	losures, Warshall"s	algorithm, Equivalence and partial ordered rel	ations, Poset,							
Hasse diag	ram and Lattice,	Functions: Types of functions - Injective, Su	urjective and							
Bijective Co	omposition of function	ions, Identity and Inverse function, Pigeon-hole	principle							
Unit-4: 1	Permutations and	combinations								
Permutation	s, Combinations, E	Elements of Probability, Discrete Probability and	d Conditional							
Probability,	Generating Fund	ctions and Recurrence Relations, Recursive	e Functions,							
Introduction	to Functional Prog	gramming								
Unit-5:	Graph Theory									
Graphs Def	initions, Paths and	l circuits: Eulerian and Hamiltonian, Types of	graphs, Sub							
Graphs Ison	norphism of graphs									
Unit-6:	Algebraic structur	re								
Algebraic s	tructures with one	binary operation: semigroup, monoid and gr	oup, Abelian							
group Isomorphism, Homomorphism and Automorphism, Cyclic groups, Normal subgroups,										
Codes and g	roup codes									

Text Bool	ΔS :
1.	Discrete Mathematics and applications- K. H. Rosen, Tata McGraw Hill publishing
	Company
2.	Discrete Mathematical Structures- C. L. Liu, Second Edition, McGraw-Hill Book
	Company.
3.	Discrete Mathematical Structures- BernadKolman, Robert Busby, Pearson Education.
Reference	e Books
1.	Discrete Mathematical Structures- Y N Singh, Wiley-India Press.
2.	Discrete Mathematics for Computer Scientists and Mathematicians- J. L. Mott,
	A.Kandel, Prentice Hall of India.
3.	Discrete Mathematical Structures with Applications to Computer Science- Discrete
	Mathematics for Computer Scientists and Mathematicians, Tata Mcgraw-Hill.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	М	L	М	S	S	-		-
CO2	S	S	S	М	М	L	М	М	S	-	-	-
CO3	S	S	S	М	М	L	L	М	S	-	-	-
CO4	S	S	S	М	М	L	L	М	S	-	-	-
CO5	S	S	S	М	М	L	S	М	L	-	-	-
CO6	S	S	S	S	М	L	L	М	S	-	-	-
C07	S	S	S	S	М	L	L	М	S	-	-	-
CO8	S	S	S	S	М	L	L	М	S	-	-	-

Code:	MCA -106 Lab -1 C Programmin	g Credits: 02							
Course O	bjectives								
This Labo	pratory course will enable students to ident	ify, formulate and solve real world							
engineerin	ing problems that require usage of algorithms in C. The course serves as a								
foundation	foundation laboratory for improving the problem solving skills of students								
Course O	utcomes	S skills of students.							
At the en	d of the course student will be able to Un	derstand the notion of mathematical							
thinking	not the course student will be able to one	oblem solving. Ability to understand							
uninking, i	ations, graphs and their use in programming a	oblem solving. Apply discrete structures							
into comp	suting problems formal specification artific	pplications. Apply discrete structures							
	buting problems, formal specification, artific	lai intempence, cryptography, Data							
CO1: Dec	in alassidhaas faa dha sirraa aashlaas ay sifi sa	4:							
COT: Desi	Ign algorithms for the given problem specifica	illons.							
CO2: Writ	te C programs for the designed algorithm spec	cification.							
CO3: Writ	te C programs to implement linear data structu	ires : Stack andQueue using arrays							
and linked	list in an application context	TT 1.11 · · · · ·							
CO4: Imp	lement Non linear data structures: Graph, Tree	es, Hashtable in an application							
context									
CO5: Imp	lement specific sort algorithms in application	context.							
CO6: Gen	erate different test cases for testing the validit	y of the developed programs							
CO7: Writ	te technical report on the observations from th	e experiments							
	Develop C programs for								
1. Condition	onal and Iterative Structures								
2. Arrays,	Functions and Strings								
3. Structur	res and Unions								
4. Pointers									
5. File Ha	ndling								
6. Stack A	DT implementation – Array implementation								
7. Queue A	ADT implementation – Linked list implement	ation							
8. Binary S	Search tree implementation								
9. Hash ta	ble implementation								
10. Graph	representation and traversals								
11. Sorting	g Algorithms:								
A)	Sorting algorithm of O(n2)								
B) (Sorting algorithm of O(n log n)								
Note:									
The Exerc	cises are collection of program specificatio	ns shall be designed by the course							
instructor	and assigned to the students.								
Reference	Books								
1.	Brian W Kernighan & Dennis Ritchie, "The C progra Hall ,2015	mming language", 2nd Edition, Prentice							
2.	Yashavant Kanetkar," Let us C", BPB Publications 8	th Edition, 2014							
3.	Introduction to Algorithms, Thomas H. Cormen, Cha 2010.	Irles E. Leiserson, Printice hall International,							
4.	Mark Allen Weiss,"Data Structures and Algorithm A	nalysis in C", Pearson Education, 2011.							
5.	Robert Kruse & Clovis L. Tondo " Data Structures 2012.	and Program Design in C", Prentice Hall,							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	S	S	S	L	L	М	М	-	-	-	-	-
CO2	S	S	S	L	М	М	М	-	-	-	-	-
CO3	S	S	S	L	М	М	М	-	-	-	-	-
CO4	S	S	S	L	М	М	М	-	-	-	-	-
CO5	S	S	S	L	М	М	М	-	-	-	-	-
CO6	S	S	S	М	L	М	М	-	-	-	-	-
CO7	S	М	М	L	L	М	L	-	М	-	-	-

Code:	MCA -107	Lab -2 Computer Organization & Architecture	Credits: 02							
Course O	bjectives									
This Labo	ratory course	will enable students to learn various logic gates and	logic circuits							
and perfor	m the logical	operations like flip-flops; Encoder, Decoder, etc. The	course serves							
as a four	ndation labora	tory for improving the logic building and perform	rm electronic							
operations										
Course O	utcomes									
At the end	d of the cours	e student will be able to Understand the notion of	mathematical							
thinking, 1	mathematical proofs and to apply them in problem solving. Ability to understand									
use of fund	nctions, graphs and their use in programming applications. Apply discrete structures									
into comp	outing problem	s, formal specification, artificial intelligence, crypto	ography, Data							
Analysis.	01									
CO1: Perf	orm various lo	gic circuit operations								
CO2: Und	erstanding the	familiarity with IC-Chips.								
CO3: Desi	ign Adder/ Sub	tracter								
CO4: Und	erstand the cor	cepts of Multiplexer/ De-multiplexer								
	Develop C p	ograms for								
1. Re	view of the dif	ferent logic design ckts.,								
	e.g. a) Fl	p/Flop(RS, JK, D, T), b)Register,(4/8 bit Synch	ronized Data							
Tra	ansfer), c)Tri-s	tate logic Gates								
2. Fai	miliarity with s	tate of art IC-chips,								
	e.g. a)Mul	tiplexer, b) Decoder, c) Encoder, d) Counter, e)S	Shift-Register,							
f)a	dder Truth Tab	le verification and clarification from Data-book.								
3. De	sign a BCD ad	der.								
4. De	sign an Adder/	Subtracter composite unit.								
5. De	sign a carry-lo	ok ahead Adder.								
6. De	sign a ripple c	counter and carry-look ahead counter and assess the	complexity of							
bot	th the ckts.									
7. Us	e a multiplexer	unit to design a composite ALU.								
8. De	sign a multiple	A Encoder within 2 Dimension								
9. De	sign a keyboar	a Encoder unit in 2 Dimension.	monsion Has							
10. 16	st a RAM chip	and cascade two emps for vertical and norizontal e	xpansion. Use							
	ed OR tri-state	e output interconnection.								
11. US	e ALU chip io	r mutuon arithmetic operation.	<u> </u>							
Notes										
The Ever	picas ara colla	ation of program spacifications shall be designed l	by the course							
instructor	and assigned to	the students	by the course							
msuuctor	and assigned it) the students.	1							
Doforonco	Books		<u> </u>							
1	Thomas H C	ormen Charles E Leiserson Ronald L Rivest Cliffor	d Stein							
1.	"Introduction	to Algorithms", MIT Press, Third Edition 2009	u Stelli,							
2.	Tanaenbaum	A.S. Langram Y. Augestein M.J. " Data Structures usi	ng C" Pearson							
	Education . 2)04	18 0 1 0 10 0 10 0 1							
3.	Mark Allen	Weiss,"Data Structures and Algorithm Analysis in	C". Pearson							
	Education. 20	11.	- , _ ••••••0011							
4.	Robert Kruse	& Clovis L. Tondo " Data Structures and Progra	am Design in							
	C".Prentice H	[all . 2012	2 co.gn m							
5.	Ellis Horrow	itz et al.," Fundamentals of Data Structures in C"	Silicon press							
~	Second edition	n. 2007.	Press,							
	second canto	.,								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	L	L	М	М	-	-	-	-	-
CO2	S	S	S	L	М	М	М	-	-	-	-	-
CO3	S	S	S	L	М	М	М	-	-	-	-	-
CO4	S	S	S	L	М	М	М	-	-	-	-	-

Code:	MCA-201	System Analysis and Design	Credits: 04
Course	hiaatiwaa		
Sustam or	olycic holps in disc	overing means to design systems where sub systems	am may have
opporently	arysis helps in uisc	ives. It halps in achieving inter compatibility	and unity of
	f sub systems. It off	ives. It helps in achieving inter compatibility	and unity of
purpose of	i sub-systems. It one	ers a means to create understanding of the comple	ex suuctures.
Course O	utcome:		
After succ	essfully completing	this course, students will understand concepts of	f Analysis and
Designing	Information System	ns. Students will understand writing system prop	oosals, system
developm	ent scheduling, and	cost-benefits analysis etc. also dealing with qualit	y assurance.
CO1: To l	earn basic things of	systems, System development Life cycle, and Sy	stem Analyst.
CO2: To c	letermine specific ne	eeds of system.	-
CO3: Disc	cuss approaches and	tasks of system. Planning for developing system	
CO4: Eva	luate tools and techn	iques.	
CO5: Use	appropriate method	s and techniques to design software.	
CO6: Imp	lementation of Deve	loped System, Evaluation and Testing of system.	
Unit-1:	Introduction to Sy	ystems	
System D	efinition, Characteri	stics, Elements and Types of system, Need of Sy	stem Analysis
and design	n, Role and Qualities	s of System Analyst, System Development Life C	ycle
Unit_2.	Unit Name		
Project Ir	itiation Feasibility	study Ascertaining HW/SW needs Criteria	for HW/SW
selection	Make v/s Buy Decis	tion Cost Benefit Analysis	101 111070 0
source and			
Unit-3:	Unit Name		
Structured	l Analysis tools- DF	D, Data Dictionary, Decision Tree, Decision Tab	ole, Structured
English,	Activity planning	control, Activity Diagrams, Case modelling,	UML, Class
Diagram	1		
∐nit_⁄I∙	Unit Name		
System	Proposal Project	Scheduling Information Gathering Tools-	Interviews
Questionn	aire IAD Prototyni	ng	interviews,
Questionin		11g	
Unit-5:	Unit Name		
System De	esign, Input/output I	Design, From Design, Database Design, File organ	nization
	TT */ NT		
Unit-6:	Unit Name	A di id Not est for Companying Combridge	Desistantes to
System In	nplementation Plan,	Activity Network for Conversion, Combating	Resistance to
Change, S	ystem Testing, Test	Plan AND test data, Types of System Test, Qual	ity Assurance,
Document	lation		
Text Boo	ks:		
1.	System Analysis and	Design, Kendall & Kendall, Pearson Education, Inc., P	Prentice Hall.
	,,		
Reference I	Books		
1.	Modern System Ana	lysis and Design, Jeffrey A. Hoffer, Prentice-Hall, Inc.	
2.	System Analysis and	Design, Awad E.M., Galgotia Publications Pvt. Ltd	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	М	L	М	S	S	-		-
CO2	S	S	S	М	М	L	М	М	S	-	-	-
CO3	S	S	S	М	М	L	L	М	S	-	-	-
CO4	S	S	S	М	М	L	L	М	S	-	-	-
CO5	S	S	S	М	М	L	S	М	L	-	-	-
CO6	S	S	S	S	М	L	L	М	S	-	-	-

Code:	MCA-202	Design and Analysis of Algorithms using C++	Credits: 04
-------	---------	---	-------------

Course Objectives:

Reinforce basic design concepts (e.g., pseudo code, specifications, top-down design) Knowledge of algorithm design strategies

Familiarity with an assortment of important algorithms

Ability to analyze time and space complexity

Course Outcome:

CO1: Describe basic organization of computer and the architecture of 8086 microprocessor. CO2: Implement assembly language program for given task for 8086 microprocessor.

CO3: Demonstrate control unit operations and conceptualize instruction level parallelism.

CO4: Demonstrate and perform computer arithmetic operations on integer and real numbers. CO5: Categorize memory organization and explain the function of each element of a memory hierarchy.

CO6: Identify and compare different methods for computer I/O mechanisms

Unit-1:

Review of Algorithms, complexity notations, elementary data structures, Graphs and Trees Algorithms on graphs including searching algorithms like DFS and BFS, Shortest path Algorithms like, the Bellman-ford algorithm, the Dijkstra algorithm, the Floyd-Warshall algorithm, Johnson["]s algorithm.

Unit-2:

Divide and conquer mechanism ,General method, binary search, merger sort, quick sort, Strassen" s matrix multiplication.

Unit-3:

The Greedy method ,The general method, container loading knapsack problem, job sequence with deadlines.

Unit-4:

Introduction to Spanning trees, Minimum Spanning Trees, Growing a minimum spanning tree, the algorithms of Kruskal and Prim.

Unit-5:

Introduction to String matching: Robin – Karp algorithm, Knuth – Morris Pratt algorithm, Algorithm for parallel computers, parallelism, the PRAM models and simple PRAM algorithms. Amortized Analysis method , Aggregate Analysis, The Accounting Method Dynamic Programming mechanism : General method and one example.

Unit-6:

Introduction to NP completeness, Polynomial Time, Polynomial Time Verification, NP Completeness and reducibility, NP completeness proofs, NP completeness problems

Text Books:

10000	
1.	Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahani, Universities
	Press Inc
2.	Introduction to Algorithms, Corman, Leiserson and others, 2nd edition, PHI
3.	Design and Analysis of Algorithms, Dave and Dave, Pearson Education Inc
Reference H	Books
1.	Data Structures, Lipschutz, Tata McGraw Hills
2.	Design Methods and Analysis of Algorithms, S.K.Basu, PHI.

3.	The Art of Computer Programming, Vol 1,2,3, Dr.Kunth, Addison Wesley
4.	The Design and Analysis of Computer Algorithms, Aho, Hopcroft and Ullman, Addison
	Wesley.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	М	L	М	S	S	-		-
CO2	S	S	S	М	М	L	М	М	S	-	-	-
CO3	S	S	S	М	М	L	L	М	S	-	-	-
CO4	S	S	S	М	М	L	L	М	S	-	-	-
CO5	S	S	S	М	М	L	S	М	L	-	-	-
CO6	S	S	S	S	М	L	L	Μ	S	-	-	-

Code: MCA-203

Course Objectives:

This is an active learning-oriented course designed to provide a managerial understanding and approach to the technical subject of Information System and Technology Management. The course will illustrate the important role that information systems play in an organization; and provide the student with a background to understand the subject and a foundation upon which to build his or her management decisions. Topics include Managing Information Assets, IT Technology and Strategy and IT Technology and Organization. This course is the capstone course for acquiring knowledge in Management Information System (MIS). It focuses on issues of real world application faced by the IT managerial professional in modern organizations.

Course Outcome:

CO1: Describe the changing organizational environment and the use of information technology to manage contemporary organizations;

CO2: Identify the business impacts of business and social networking, as well as ways the IT Managerial professional can leverage the new reality of human connectivity on the Internet; CO3: Learn IT Managerial Professional leadership responsibilities and opportunities;

CO4: Apply MIS to current enterprise systems best practices in terms of the relationship between customer preferences and shareholder wealth;

CO5: Apply the technological foundations of information systems, i.e., hardware, software and telecommunications;

CO6: Evaluate the organizational context of information systems, including decision making and information processing concepts;

CO7: Identify best practices for one of the Internet's newest and most revolutionary technologies: cloud computing and ways it is shaping the new economics of business.

Unit-1: Management Information system

Need, Purpose and objectives-contemporary approaches to MIS–Information as a strategic resources-use of information for competitive advantage-capital MIS as an instrument for the organizational change.

Unit-2: Information Management and Decision Making

Model of Decision Making – Classical, administrative and Herbert Simon^s Models, Attributes of Information & its relevant to decision making – Types of Information.

Unit-3: Information Technology

Definition, IT Capabilities and their organizational impact – Telecommunication and Networks – Types and Topologies of Networks – IT in enabled Services such as call Centers, Geographical Information System etc

Unit-4: DBMS & Systems Analysis and Design

Data warehousing and Data mining, System Development Life Cycle – Alternative Systems Building Approaches – Proto Typing Development Strategies-Structured Analysis -Prototyping- Rapid Developing Tool s – CASE Tool s –Object oriented systems (only introduction to these tools and techniques).

Unit-5: Decision Support System

Group Support System – Executive Information Systems - Executive Support Systems –Experts Systems and Knowledge based Experts Systems – Artificial Intelligence.

Unit-6:	Management Issues in MIS									
Informatio	Information Security and controls- Quality assurance - Ethical and Social									
Dimensior	Dimension - Intellectual Property Rights as related to IT services/ IT products -									
Managing	Global Information Systems.									
Text Book	KS:									
1.	Brown, C.V., DeHayes, D.W., Hoffer, J.A., Martin, E.W., & Perkins, W.C. (2012).									
	Managing Information Technology. (7th Ed). Pearson/Prentice Hall.									
2.	Management Informant ion Systems, Jawadekar Tata McGraw Hill.									
Reference E	Reference Books									
1.	Management Information Systems-Landon 7th Edition, Pearson Education, Asia.									
2.	Management Information Systems, Davis and Olson, Tata McGraw Hill .									
3.	Management Information Systems, Jayant Oke.									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	S	-	L	-	L	-	L	-	-	L	
CO2	L	М	-	L	-	-	-	М	-	-	L	-
CO3	S	S	S	М	М	-	-	L	-	L	L	-
CO4	S	S	S	М	L	-	-	М	S	L	L	-
CO5	S	S	S	М	М	L	S	М	L	-	-	-

Code:	MCA-204	Probability and Statistics	Credits: 04
Course O	hiectives•		
Distinguis data, Iden fundamen	sh between quantita tify, formulate and tal applications	tive and categorical data, Apply different statistic solve problems, Classify different types of Proba	al measures on bility and their
Course O	utcome:		
CO1: App	ly probability theo	ry via Bayes" Rule	
CO2: Des	cribe the properties	of discrete and continuous distribution functions	
CO3: Ass	ess the sampling di	stribution, efficiency and biasedness of estimator	sUse statistical
tests in tes	sting hypotheses on	data	1.
CO4: Ana	lyze goodness of fi	t, ANOVA for one-way and two-way classification	on data
Unit-1:	Introduction to l	Probability	
Random e	xperiment, Sample	space, Events, Axiomatic Probability, Algebra of	events
Unit_2.	Conditional Pro	hahility	
Condition	al Probability. Mu	Itiplication theorem of Probability. Independent	events. Bave's
Theorem	ur 1100001110j, 1110		e , es , buje s
Unit 3:	Random variabl	es	
Discrete r	andom variable, C	ontinuous random variable, Two-dimensional ran	ndom variable,
Joint prob	ability distribution.	Stochastic independence	
Unit-4:	Mathematical Ex	spectation	
Expected Properties distributio	value of a random of Expectation on-Uniform distribu	a variable, Expected value of a function of a ran and Variance, Covariance, Binomial distribu- tion -Normal distribution	ndom variable, ution –Poison
T T 1 / M			
Unit-5:	Measures of Cen	Itral Tendency & Measures of Dispersion	D.1
Frequency Mean M	/ Distribution, His edian Mode Ran	and leaf diagram, ogives, frequence of the operation of the second secon	whisker plot
Standard I	Deviation, Coeffici	ent of Variation	whisker plot,
Unit-6.	Skewness Corre	lation & Regression	
Karl Pears	son's coefficient of	Skewness, Bowley's coefficient of Skewness, Sc	atter Diagram.
Karl Pear	son's coefficient o	f correlation, Spearman's rank correlation coeff	icient, Linear
Regressio	n and Estimation, C	Coefficients of regression	-
Text Boo	ks•		
1.	Fundamentals of M	lathematical Statistics – 1st Edition S.C.Gupta, V.K.K	apoor, S Chand
2.	Introduction to Pro Tata McGraw Hill	bability & Statistics – 4th Edition J.Susan Milton,	Jesse C. Arnold
3.	Probability and Sta (English) 1st Edition	tistics with Reliability, Queuing, And Computer Scier on:Kishore Trivedi, PHI	ace Applications
Reference l	Books		
1.	Fundamentals of St	tatistics : 7th edition S C Gupta, Himalaya Publishing	house
2.	Schaum's Outlines McGraw Hill	Probability, Random Variables & Random Process 3	3rd Edition Tata
3.	Probability & Stati	stics for Engineers: Dr J Ravichandran, Wiley	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	М	-	L	L	-	-	L	L	-	L	-
CO2	L	-	М	-	М	-	S	М	-	-	L	-
CO3	S	L	-	-	S	L	-	S	-	S	-	-
CO4	S	М	М	S	-	-	М	S	-	М	-	-

Code:	MCA -207	Lab -3 C++ Programming	Credits: 02							
Course (Objectives									
This Laboratory course will enable students to identify, formulate all techniques of software										
developm	nent in the C+	+ Programming Language and demonstrate these tech	niques by the							
solution	of a variety of	problems spanning the breadth of the language.								
Course (Course Outcomes									
At the end of the course student will be able to Understand the notion of mathematical										
thinking,	thinking, mathematical proofs and to apply them in problem solving. Ability to understand									
use of fu	use of functions, graphs and their use in programming applications. Apply discrete structures									
into com	to computing problems formal specification artificial intelligence cryptography Data									
Analysis			8. ap							
CO1: Ex	plain the conce	ents of oops for building object based applications								
$CO2 \cdot W_1$	rite a program i	n different logic with suitable validations for a given pro	oblem							
CO3: Im	nlement the tec	higher and features of the Object Oriented Programmi	ng constructs							
to constr	uct an applicati	on	ing constructs							
$CO4 \cdot Im$	nlement metho	d overloading and method overriding for different user								
specifica	tions	a overloading and method overriding for unreferit user								
CO5. Wi	rite programs ir	nnlementing inheritance for an application domain								
CO5. Wi	rite technical re	port on the observations from the experiments								
CO0. WI		programs for								
1 Constr	Develop C++									
1. Collsu 2. Storag	a classes like a	uto extern register and static								
2. Storag	momber data	ato, extern, register and state.								
5. Static	member data, s	had avamiding								
4. Uvent		nou overnung.								
5. Innern										
o. Pointe	r Arithmetic.									
7. Inline	Functions.									
8. Functi	ons & Recursio	on.								
a. R	ecursion	1 * M · · · ·								
b. F	unction with "t	his pointer								
9. Friend	Function & Fr	riend Class.								
10. Exce	ption handling	methods.								
11. Over	load Unary & I	Binary Operators as Member Function & Non Member I	function.							
a. l	Jnary operator	as member function								
b. I	Binary operator	as non member function								
12. Class	s Templates									
Note:										
The Exe	rcises are coll	lection of program specifications shall be designed b	by the course							
instructor and assigned to the students.										
Reference Books										
1.	Bjarne Strous	trup ,"The C++ Programming Language", 4th Edition, A	Addison-							
	Wesley, 2015									
2.	Scott Meyers	"Effective C++ 55 Specific Ways to Improve Your	Programs and							
	Designs", Thi	rd Edition, Addison-Wesley, 2011								
3.	Paul Deital d	& Harvey Deital, "C++ How to Program", 7th Edi	tion, Pearson							
	Education, 20	10								
4.	Stanley Lippn	nan, "C++ Primer", 4th Edition, Pearson Education, 200	7.							
5.	Yashavant P.	Kanetkar, "Let Us C++", BPB Publications, 2007.								
	·									

6.	Robert Laffore, "Object Oriented Programming using C++", 4th Edition, Sams
	Publishing, 2002.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	М	S	S	S	-	-	-	-	-	-
CO2	S	М	S	S	М	-	-	-	-	-	-	-
CO3	S	М	М	S	S	S	-	-	-	-	-	-
CO4	S	S	М	S	S	М	-	-	-	-	-	-
CO5	S	S	S	S	S	Μ	-	-	-	-	-	-
CO6	S	S	S	S	S	Μ	-	-	-	-	-	-

Code:	MCA -208	Case Study and Open Elective	Credits: 02							
Case Stud	ly Course Obj	ectives								
This cours	This course will enable students to learn how to develop a case study and improve their									
academic	writing skills.	This course will also provide a platform to students to	o improve their							
thinking p	thinking process and develop a theoretical module on a real world problem.									
		•								
Course O	utcome:									
CO1: Stude	ents will be able	to write a report in the form of case study and participate in	n group							
discussions	s with high level	of self-confidence.								
Co2: Stude	ents will be able t	o develop a theoretical module.	20							
Co3: They	will have adequa	ate reading and writing skills needed for workplace situatio	ns							
Syllabus	Preparing a ca	se study report with a PPT presentation on recent topic	raanizing the							
Synabus	material -Introc	lucing oneself to the audience –introducing the topic –ansy	wering							
	questions -indi	vidual presentation practice—presenting the visuals effect	tively –10							
	minute present	ation	•							
	Guidelines fo	or Seminar								
1. Student	s need to confin	rm case study with consent of guide								
2. Student	should submit	the report in hard copy (spiral binding) and								
Soft Co	py (Report + P	resentation) as per the guideline below								
2.1 Ir	ntroduction of 7	Fonic								
	betract of study									
		y								
2.5 5	urvey/Analysis									
2.4 D	etail Study									
2.5 R	esults									
2.6 C	conclusion									
2.7 R	eferences									
2. Student	should Give Pa	resentation (With PPT)								
Open Ele	ctive Course C	Dbjectives								
Students c	an choose one	of the open electives offered by various schools of ca	mpus or the							
courses of	fered on variou	s e-learning platforms like SWAYAM/MOOC/NPTE	EL, etc. But							
they need	they need to take prior permission from School Director before joining one of these elective									
courses. \t	hey must produ	ice successful completion certificate / credits earned t	o the School							
after com	oleting the unde	erwent course.								
r										
Reference	Books									
1.	Case Study H	andbook: How to Read, Discuss and Write Persuasive	elv About							
	Cases by Elle	t, Harvard Business Publication.	- J							
2.	Case Study H	andbook, Revised Edition, William Ellet, Harvard Bu	siness Review							
	2022 2000 11	, revised Zarden, William Lifet, Hai vara De								